Portable Equipment Workgroup

January 31, 2003

Agenda

- Introduction
- Federal limitation on regulatory authority
- Overview of diesel PM control techniques
- Cost for diesel PM reduction
- Diesel PM reduction strategies
- Timeline

Introduction

- Diesel Exhaust is significant public health risk
 - Identified as toxic air contaminant (TAC) in 1998
 - 70% of the total ambient risk
 - Average potential cancer risk: 500 per million

Introduction (continued)

- Diesel Risk Reduction Report (2000)
 - Eleven major measures identified to reduce Diesel PM
- Develop air toxic control measure to reduce Diesel PM from existing portable engines

Introduction (continued)

- Products to be developed
 - Develop air toxic control measure (ATCM) for District adoption
 - Modify portable equipment registration program (PERP)

Definition of Portable

- Engine that is not self-propelled or intended to be propelled
- At one location less than 12 months
 - exception: seasonal sources

Portable Equipment Registration Program

- Voluntary
- Registered engines can operate statewide
- Air Quality Provisions
 - Initial emission standards
 - All engines must meet certified emission standards by 2010

Emissions Inventory (2000)

- Portable engines
 - -49,000
 - NOX emissions: 22,000 TPY
 - Diesel PM Emissions: 1,400 TPY

Federal Limitation on Regulatory Authority

- Federal preemption for nonroad engines
- Only California and U.S. EPA can adopt and enforce standards (Sec. 209 of CAA)

Federal Limitation on Regulatory <u>Authority (continued)</u>

- Impact on ATCM development
 - Limited regulatory authority for new engines used in farm and construction and less than 175 horsepower
 - · Generators not included
 - For other classes of engines, must seek authorization from U.S. EPA Administrator

Diesel PM Control Techniques

- Available exhaust gas treatment based technologies
 - Diesel oxidation catalyst (DOC)
 - Particulate Traps
 - Catalyzed
 - Active
 - Used with fuel-borne catalyst

Diesel PM Control Techniques (continued)

- Repower
 - Replace engine with cleaner engine
 - Achieves both NOx and PM reductions
- Other options
 - Alternative fuels
 - Electrification

Catalyzed Particulate Traps

- Efficiency of 85% or more
- Conditions for success
 - Fuel with sulfur content less than 15 ppm
 - Particulate loading not too high
 - Exhaust temperatures exceed 250 degrees
 Celsius for 40-60% of operation

Temperature Profile Study

- Goal:
 - Temperature profiles for 150+ engines
- Study conducted by
 - CARB, Northern California
 - CE-CERT, Southern California

Temperature Profile Study (continued)

- Portable Diesel Engine Applications
 - Aggregate processing
 - Construction
 - Dredging
 - Government
 - Oil well servicing
 - Rental

Temperature Profile Study (continued)

- Status Report
 - To be completed by early summer
 - 30+ Engines currently being profiled
 - Example of data

Temperature Profile Study (continued)

- Installation of data-logging equipment
 - Probe placement
 - Equipment
 - How accomplished

Temperature Profile Study (continued)

- Participation
 - Sign-up sheet
 - Additional information/questions

Larry Vettraino: (916) 322-8276,

e-mail: lvettrai@arb.ca.gov

Verification Program

- Uniform review and approval process for all techniques and technologies that reduce particulate emissions
 - Includes both on-road, off-road, and stationary applications
 - Fuels

Verification Program (continued)

- Verified technologies limited to:
 - onroad applications
 - newer engines
- Verified technologies
 - passive filters
 - DOC

Cost for Diesel PM Reductions

- MECA
 - Diesel Oxidation Catalyst (DOC)
 - \$10-12/ HP
 - Particulate traps
 - \$15/HP for truck sized engines
 - \$50/HP for other sizes

Cost for Diesel PM Reductions (continued)

- Costs for installing particulate traps on stationary engines
 - Backup application (175 2,800 HP)
 - -\$22 49 / HP

Diesel PM Reduction Strategies

- Two approaches
 - Control-technology approach (BACT)
 - Fleet-wide approach

Control-Technology Approach

- Over period of time, all engines are equipped with appropriate control technology
- Pros and Cons
 - Based on available controls
 - Difficult to achieve Diesel PM reduction goals
 - Increased recordkeeping / reporting

Fleet-Wide Approach

- Fleet owners / operators would be given deadlines to achieve specified percentage of emission reductions of diesel PM
- Pros and Cons
 - Can obtain both diesel PM and NOX reductions
 - Owners / operators have flexibility in how emission reduction goals are achieved
 - Increased recordkeeping / reporting

Timeline

- Workgroup meetings now thru early summer
- Late summer workshop
- December Board meeting

Contacts

ATCM Development

Mike Waugh

Phone: (916) 445-6018

e-mail: mwaugh@arb.ca.gov

Grant Chin

Phone: (916) 327-5602 e-mail: gchin@arb.ca.gov

Contacts

PERP Regulation Issues / Revisions

Todd Wong

Phone: (916) 324-8031 e-mail: twong@arb.ca.gov